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PREFACE

This document contains a report on Research and Advanced
Development at the Jet Propulsion Laboratory during the period
January 1, 1971 to June 31, 1971 sponsored by the Planetary
Quarantine Branch of the NASA Office Space Science and

Applications,
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' SECTION I'
SPACECRAFT CLEANING AND DECONTAMINATION TECHNIQUES
‘NASA No. 191-58-61-02-55
COGNIZANCE: H. W. Schneider, A, S. Irons

ASSOCIATE PERSONNEL: C. Hagen (AVCO), G. Simko (AVCO)

1.1 INTRODUCTION

The objective of this task is to develop methodology and procedures for
the reduction of microbial burden on an assembled spacecraft at the time of
encapsulation or terminal sterilization. This technology is required for reduc-
ing excessive microbial burden on spacecraft components for the purposles- of
either decreasing planetary contamination probabilities for an orbiter or min-

imizing the duration of a sterilization process for a lander.
1.2 SIGNIFICANT ACCOMPLISHMENTS

1.2.1 Mechanical Cleaning

During this reporting period, an experimental device (designated a
vacuum flow simulator) was designed and fabricated to study the behavior of
particles microscopically under different airflow conditions. The installation
and calibration of the device was initiated. The overall test set-up is shown in

Fig. 1-1.

The vacuum flow simulator is intended to simulate the cleaning aero-
dynamics of a spacecraft surface in a controllable and measureable manner
while observing the test particulates through a microscope. A schematic of the
apparatus is shown in Fig. 1-2. It consists of a plenum chamber (2) attached
to the microscopic substage (1), a glass slide (3) which .may be seeded with the
test particles (4), and a test nozzle (or brush) (5), which can be moved up and
down to vary the standoff from the sample surface. The entire device can be

moved vertically by means of the existing focusing mechanism.
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The atmospheric air (po, to) enters the system through a calibrated
inlet and expands from the plenum chamber (2) through the narrow sl_ot between
the nozzle (5) and the seeded sample surface (4). The pressure head, to pro-
duce the flow-velocity and to cover losses, is provided by a vacuum pump con-
nected downstream to the system. The flow rate through the system can be
controlled by means of a throttling valve, and is determined by measuring the
pressure drop (Apl) across the inlet nozzle by means of a slant tube water
manometer. The surface pressure profile across the test nozzle (5) is mea-
sured by means of a precision ground and tapped steel plate connected to a
mercury U-tube-manometer. (The steel plate replaces the glas; slide during

calibration tests. )

Figure 1-3 shows the test nozzle attachments used: (from left to right)
a round covergent nozzle (5mm ID); a sharp edged nozzle (5mm ID); and a sable
brush (6.5 mm OD). A circular shape was selected for all test attachments to
avoid edge effects. Figure 1-4 shows a close up view of the convergent nozzle

through the glass slide.

The objective of the test activity with the described apparatus is to
determine the relationship between the parameters effecting the efficiency of
vacuum cleaning, mainly the nozzle shape and standoff from the surface, the
flow velocity, the conditions of the sample surface, and the size and adhesive

properties of the particulates.

The parameter for evaluation will be the mean air velocity between the
nozzle lip and the sample surface, which can be determined by means of the

measured data using common thermo-aerodynamical relations,
The following techniques will be applied:

(1) Acquiring a particle of interest, size its major dimensions and

determine the mean detachment velocity or

(2) Sweep the sample with a certain mean velocity and compare the

counts taken prior to and after the sweep.

Tests to determine the basic aerodynamical characteristics of the

apparatus are in progress,
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1.2.2  Ethylene Oxide

The contrattual effort was completed and a final report issued.

o
<

1.3 PROBLEM AREAS

No problem areas were noted during this reporting 'period.

1.4 FUTURE ACTIVITIES

During the next reporting period, tests using the vacuum flow. simulator
will be used to perform experiments to determine the removal efficiency of:
1) different test nozzles; 2) dry, wet, and fingerprinted dust samples; and

3) freon spray and dry nitrogen flow.

1.5 PUBLICATIONS

Becton, Dickinson Research Center, "Development of Parametric Data
for the Establishment of an Ethylene Oxide Cycle for the Decontamina-
tion of Spacecraft, " Final Report, July 1971.
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Fig. 1-2. Schematic of vacuum flow simulator

Fig, 1-3. Test nozzle attachments
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SECTION II .
STUDIES OF SPACECRAFT STERILIZATION PARAMETERS
NASA No. 191-58-61-06-55
COGNIZANCE: M. D. Wardle
ASSOCIATE PERSONNEL: C. A. Hagen (AVCO), G. Simko (AVCO)

and R. C. Koukol (JPL)

2-1. . INTRODUCTION

The primary objective of this task area is to acquire the necessary
parametric information to define optimum flight acceptance and sterilization
processes for space hardware. In line with this goal, the dry-heat resistances
of microorganisms representative of those found on flight spacecraft are char-

acterized in this section.
2.2 SIGNIFICANT ACCOMPLISHMENTS

2.2.1 Thermal Resistance of Microbial Populations Occurring in Hardware

Assembly Areas

In conjunction with the microbiological monitoring program performed
during the launch operations for Mariner-Mars 1971, an experiment was enacted
to collect naturally occurring microbial fallout and estimate its dry-heat resis-
tance. Large sheets of teflon 0. 14 rn2 (1.5 ftz) were deployed as collection
surfaces in the Mariner spacecraft assembly areas at Cape Kennedy. After a
1 -week exposure to the environment, the surfaces were collected and subjected

to dry-heat cycles at 125°C £ < 1°C,

The extinction point for the microbial populations occurred between 9

and 13 hours of exposure to dry-heat (Table 2-1).

A method for converting extinction data to D1250 C values yielded the
results shown in Table 2-2. This procedure for calculating D - values from

fraction negative data produced worst case and average D values of 2,18

125°C
and 1. 29 hours, respectively.
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Table 2-1. Extinction point assay of AFETR fallout

Time, hr No. of sites sampled ft2 Sites positive, %
1 12 18 83
3 24 36 50
6 23 34.5 22
9 19 28.5 5.3
13 42 : 63 0

The Mariner microbioclogical monitoring program included an environ-
mental sampling phase which entailed the exposure of 1 x 2 in, stainless steel
coupons to the spacecraft assembly environments. Table 2-3 shows a compari-
son of this environmental sampling to the results obtained using the large teflon
surfaces., The order of magnitude of the populations detected compared quite
favorably with the exception of the vegetative cells found in the north bay of the

Explosive Safe Facility (ESF).

The prime objective of this experiment was to obtain an estimate of the
dry-heat resistance of naturally occurring, non-cultured microbial populations,
In order to more fully explain and relate the results acquired to the NASA
sterilization program, it was decided to isolate, identify, and dry-heat test
certain of those organisms surviving different time exposures at 125°C on the
teflon sheets. The identification of these organisms was accomplished under a
cooperative effort with the USPHS, Cape Kennedy. Dry-heat testing was con-
ducted in ambient and GN2 atmospheres. A modified oven capable of maintain-
ing a O2 level of less than 2.5%, when under constant GN2 purge, was used for
CvN2 testing. The same oven (minus CuN2 purge).was used for the ambient

testing.

It was found that the dry-heat resistance of the isolates was approxi-
mately 2-4 times greater in air than in nitrogen (Table 2-4). As would be
expected, the resistances of the cultured isolates were significantly less than

their noncultured counterparts (Table 2-5).
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values from FN data

Tab}e 2-2, Calculation of D125° C
r P q
Timte . No. of No. No. Ny No D25, hr
> 77| replicates tested | positive | negative
1 12 10 2 1.79 | 5.86 x 102 0.397
3 24 12 12 0.693] 1.29 x 10°| 0.917
6 23 5 18 | 0.247] 9.56 x 10| 1.67
9 29 1 18 | 0.048]6.29.x 10%| 2.18
13 42 0 42 NA |8.33 x 10° NA
X =1.29
Nt = Survivors per replicate unit = In(r/q)

D

t

125°C

log No - log Nt

Estimate of initial spore burden

Table 2-3. Numbers of viable org:{anisrns/ft2 in AO and ESF facilities

Spores Vegetatives
Location '
Stainless steel Teflon Stainless steel Teflon
2 2 4 3
ESF-North bay 1.85 x 10 2.04x10 1,45 x 10 1.58 x 107
ESF-Air lock - 1,51 x 10° - 5.87 x 10%
ESF-South bay - 1,12 x 102 4,72 x 102 5.55 x 103 6. 54 x 103
AO-High bay 4,60 x 10} 3.97 x 10* 1.02 x 10° 8. 69 x 10°
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Table 2-4, Dry-heat resistance of cape isolates

Lolate Teflon P125°C (min)
exposure (hr)
Air Nitrogen
1 3 56 15 -
2 3 13 -
3 3 13 -
4 6 19 9
5 6 18 10
6 6 22 -
7 6 42 15
8 6 155 44
9 9 26 10

Table 2-5, Comparison of non-cultured vs cultured dry-heat resistance

Teflon _ D-value D-value in air
exposure (hr) from FN data (min) for cultured isolates (min)
54 27
102 51
132 26
2.3 FUTURE ACTIVITIES

Further testing of teflon and spacecraft isolates will be reported in the
next semi-annual review under the Spacecraft Decontamination and Cleaning

tasks,
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PUBLICATIONS

Wardle., M. D., Brewer, W. A., and Peterson, M. L., "Dry-
Heat Resistance of Bacterial Spores Recovered from Mariner-
Mars 1969 Spacecraft,'” Applied Microbiology 20:827-831, 1971.

PRESENTATIONS

Wardle, M. D., "Thermal Resistance of Microbial Populations
Occurring in Hardware Assembly Areas, ' presented to AIBS
Planetary Quarantine Advisory Panel, June 1971.
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- SECTION III .
'NA’I‘URAL SPACE ENVIRONMENTAL STUDIES
NASA No. 191-58-62-04-55
Cognizance: D. M. Taylor - M. Knittel
Associate Personnel: C. A, Hagen (AVCO), R. L, Olsen (Boeing)

C. D. Smith (AVCO), E. A. Gustan (Boeing)

3.1 . INTRODUCTION

The objective of the Natural Space Environment Studies is to determine
the probability of microorganisms surviving exposure to elements of space
environment including launch pressure changes, vacuum and heat, and different
types of solar, cosmic, and planetary trapped radiation. Twelve organisms,
randomly selected from over two hundred isolates recovered at differ.ent assem-
bly and test stages from Mariner Mars '7]1 spacecraft, and t§vo comparative

organisms, Bacillus subtilis var, niger and Staphylococcus epidermidis

ATCC 17917, are being tested. Nine of the spacecraft isolates are spore-
formers while three are nonsporeformers., These fourteen organisms are used
in all experiments constituting a unified approach that examines the effects of

a variety of factors of the natural space environment on the survival of a space-

craft microbial subpopulation.

Additional task areas are directed toward understanding the probability
of release of microorganisms from the interiors of solids by simulated space-
craft impact and aeolian erosion and, if released, the probability of growing in

the environment of a particular planet,
3.2 SIGNIFICANT ACCOMPLISHMENTS

3.2.1 Effect of Simulated Spacecraft Launch Pressure Changes on Survival
of Microorganisms

3.2.1.1 Description of Study. The launch profile study is designed to examine

the effect of rapid pressure changes, that may occur during a spacecraft launch,
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on the survival of microorganisms, The fourteen test organisms previously
described were exposed to changes in pressure similar to that recorded for the

Mariner '69 spacecraft,

The organisms were exposed to the vacuum environment for 12 min.
Additional exposures of one or 24 hr were conducted to determine what effect
these extended vacuum exposures had on the survival of the organisms following
the launch pressure change. Throughout this report the 12 min launch pressure
change and the 12 min launch pressure change followed by either a 1 or 24 hr

extended vacuum exposure are collectively referred to as vacuum exposures.

During the 12 min launch profile the organisms were exposed to 20°C
while during the 1 and 24 hr vacuum exposures the organisms were exposed to
both 20 and -20°C, With the 12 min launch profile the organisms experienced
an approximate 10-7 torr pressure change when the pressure decreased from
750 torr to 10~ torr. Order of magnitude changes to 10-% and 10~ torr

occurred during the 1 and 24 hr vacuum exposures, respectively,

3.2.1.2 Materials and Methods, The organisms were recovered from the

MM '71 PTM spacecraft at various microbiological assay milestones during the
assembly and test of the spacecraft by use of standard procedures for the
microbiological examination of spacecraft hardware. A swab sample was
placed into 10 ml of sterile distilled water and was sonicated at 25 KHz for

2 min., The sample was then divided into two 5 ml portions with 4 ml of one
portion being plated directly by the pour plate method using Trypticase Soy
Agar (TSA; Baltimore Biological Laboratories). The three nonsporeformers
and six sporeformers were derived from these samples. The remaining 5 ml
portion was heat shocked at 80°C for 15 min and then 4 ml of this portion was
plated by the pour plate method using TSA., Three sporeformers were derived

from these samples.

The sporeforming isolates were sporulated in the liquid synthetic
medium of Lazzarini and Santangelo (J. Bacteriol. %:1é5-130, 1967) modified
by the addition of 25 mg of both L-methionine and L-tryptophan to one liter of
medium. The spores were washed 7 times with sterile distilled water and

finally resuspended in 95% ethyl alcohol.

3-2
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The nonsporeformers were maintained on TSA slants. A lawn was
prepared by resuspending the growth from a slant in Trypticase Soy Broth
(TSB; Baltimore Biological Laboratories) and inoculating TSA plates .with this
suspension., After a 48 hr incubation at 37°C, the cells were harvested and

washed with distilled water for final resuspension in distilled water,

A planchet was inoculated with either 10° spores or 106 vegetative
.cells. The inoculum was allowed to air dry in a humidity-temperature éon-
trolled room (45% relative humidity, 21°C). The planchet was then exposed
to the selected test conditions. At the conclusion of a test, the chamber was
backfilled to ambient pressure with dry nitrogen., A planchet was placed into
10 ml of 0. 1% peptone water and sonicated at 25 KHz for 12 min., The suspen-
sions were serially 10-fold diluted with the appropriate dilutions plated in
triplicate using TSA as the recovery medium. The plates were incubated at

37°C for 48 hr.

Figure 3-1 presents the pressure changes experienced by the micro-
organisms during a 12 min, 1 hr, and 24 hr vacuum exposure., For purposes
of comparison the pressure change is included as experienced by the MM '69
spacecraft during launch. The pressure descent of the simulated launch profile
during the initial 25 to 50 sec exceeded pressure changes experienced by the
MM '69 spacecraft. The crossover point occurred at approximately 250-275
sec at 7 x 10'6 torr. By the end of 720 sec (12 min) the simulated launch pro-
file pressure was approximately 3 x 10-6 torr. At 1 hr the pressure was 10-6
torr and at 24 hr it was 10~ torr. The pressure profile of the simulated

launch was reproducible throughout the experiments.

The data were subjected to an analysis of variance, and where statisti-
cal significance (P < 0.01) existed, the Duncan's Multiple Range test (Biometrics

11:1-42, 1955) was applied.

3.2.1.3 Results and Discussion, Table 3-1 shows the results from the analy-

sis of variance performed on the nonsporeforming MM 171 isolates exposed to
12 min, 1 hr, and 24 hr vacuum exposures at 20°C, Isolate, time, and their
interaction were significant. Table 3-2 shows the results obtained from apply-

ing Duncan's Multiple Range test to these data,
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Table 3-1.

900-556

Analysis of variance for nonsporeforming MM '71 isolates -

after vacuum exposures at 20°C -

Source of Degrees of Mean F
variation freedom square ratio
Replicates- 6 165 - 0.53
Treatment 11 2620 8. b2 #%
A(Isolate) 4267 13, 91 %%
- B(Time) 1820 5. 90 %%
AB 5610 18, 27k
Error 66 308
Total 83

#**F-ratios significant at P < 0.01 level.

Table 3-2., Comparison of percent survival of MM '71 nonsporeforming
isolates after vacuum exposures at 20°cl
Isolate
Time Av.erage
time
5 19 SE

12 min 56 abcd 68 de 45 ab 75 def 61x

1 hr 70 d 106 g 40 a 92 fg 77Y

24 hr 75 def 78 ef 65 bede 48 abc 67X

Average 67 84 50 72

isolate n o m n

1Similar subscript letter indicates no significant difference between

percent survivals.
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The nonsporeforming MM '71 isolates exhibited significantly different
resistances to the vacuum exposures. Isolate 19 was the least resistant to the
pressure changes with 50% of the cells remaining viable while isolate 5 was

most resistant with 84% of the cells remaining viable,

With respect to time, the 12 min vacuum exposure allowed fewest sur-
vivors (61%). The greatest percent survivors were recovered after the 1 hr
vacuum exposure (77%) with the percent survivors recovered after the 24 hr
vacuum exposure being intermediate (67%). At this time it appears that a rapid
pressure descent followed, relatively close in time, by a pressure ascent which
occurred with the 12 min vacuum exposure had the greatest effect on cell sur-
vival, The 67% survival found after 24 hr may reflect cellular death caused by

extended vacuum exposure,

The analysis of variance performed on data obtained from the 1 and
24 hr vacuum exposures at both -20 and 20°C is shown in Table 3-3. Isolate,
temperature, and the interactions isolate-time and isolate-time-temperature
were significant at the P < 0.01 level. Table 3-4 shows the results obtained
from applying Duncan's Multiple Range test to these data. Isolate 5 was the
most resistant (99% survival) while isolate 19 was the least resistant (60%

survival),

The significance of the interactions of isolate-time and isolate-time-
temperature may be largely caused by a specific isolate's resistance to the
experimental condition as with isolate 5. However, there appear to be sub-
order interactions of significance with, for example, isolate SE which was less
affected by the 1 hr than by the 24 hr vacuum exposure at both temperatures
while with isolate 19 the 24 hr at -20°C test condition allowed greatest survival

of the test conditions used,

Table 3-5 shows the results from the analysis of variance performed
on the sporeforming MM '71 after 12 min, 1 hr, and 24 hr vacuum exposures
at 20°C. Isolate, time, and their interaction were significant. Replication . -
was also significant and indicated that some unknown event(s) occurred at the

time the replicate experiments were performed.

There was an additional problem encountered with the sporeforming

isolates. There were frequent occurrences when the number of spores
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Table 3-3. Analysis of variance for nonsporeforming MM '71 isolates
after 1 and 24 hr vacuum exposures at -20 and 20°C

Source of Degrees of Mean F
variation freedom square ratio
Replicates - 6 82 5A 1.59
Treatment 15 4278 8, 23%%
A(Isolate) 3 7760 14, 92%%
B(Time) 1 604 1.16
C(Temperature) 1 ' 3866 7.43%%
AB 3 11669 22,44 %%
AC 3 206 0. 40 |
BC 1 456 0.88
ABC 3 17368 33, 40%:%
Error 90 520
Total ‘ 111

#%F-ratio significant at P < 0.01 level
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Table 3-4. Comparison of percent survival of MM '71 nonsporeforming
isolates after 1 and 24 hr vacuum exposures at -20 and
20°cl
Time Isolate
Time Temp
Temp |. 4 5 19 SE
1 hr -20°C 78 bed 110 d 44 ab 106 cd 80_ -20°C/84
+20°C 70 abc 106 cd 40 a 92 cd +2.0°C/72t
24 hr -20°C |106 cd 103 cd 85 cd 43 ab 76x
+20°C 75 abed 78 bed | 72 abce 48 ab
Average 82 99 60 72
Isolate n o m mn

1Sirnilar subscript letter indicates no significant difference between percent
survivals.

Table 3-5,

isolates after vacuum exposures at 20°C

Analysis of variance for sporeforming MM '71

Source of Degrees of Mean F
variation freedom square ratio
Replicates 3 6528 6. 79%:%
Treatment 29 4170 4, 34%%

A(Isolate) 9 2775 2. 89
B(Time) 2 5846 6. 08%:%
AB 18 4682 4, 87%%
Error 87 961
Total 119 ’

*%F -ratios significant at P < 0,01 level
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recovered after exposure to the test environment exceeded the number of spores
recovered before the exposure. Similar resulfs have been reported for other’
deep space vacuum simulation experiments (A. A. Imshenetsky and S. V. Lysenko,
Life Sciences and Space Research, Vol. III, pp 142-148, 1965; G, J. Silverman,
Planetary Quarantine, edited by Hall, 1971; and E. A. Gustan and D. A. Strand-
berg, Boeing Company Report D2-121029-1, 1970). In our test the conditioﬁ was

particularly manifested with isolates 2, 12, 13, 16, and 18. Two possible
explanations may be given for this problem: 1) the spore suspensions were
comprised largely of clumps of 2 or more spores and that exposure to the test
environments physically broke up the clumps; or 2) the spores were physically

activated to germinate as a consequence of their exposure to the test environments.

Table 3-6 shows the results obtained from applying Duncan's Multiple
Range test to the percent survival of MM'7] sporeforming isolates after vacuum
exposures at 20°C, The sporeforming isolates exhibited significantly different
r‘esistances to the vacuum exposures. Isolates 1 and 8 were the least resistant
with 94 and 91% survivals, respectively, while isolates 12, 13, and 18 were the
most resistant and spores of the comparative organism, B. subtilis var. niger,

were of intermediate resistance.

With respect to time the sporeforming isolates exhibited a different
survival pattern than the nonsporeforming isolates. The 1 hr vacuum exposure
allowed fewest survivors (98. 5%) of the sporeforming isolates while no statis-
tical significance existed between the percent survivors from either the 12 min

(115, 5% survivors) or 24 hr (122% survivors) vacuum exposures.

It should be emphasized that the resistance of isolates 12, 13, and 18
to the test conditions may be largely the result of the breaking up of spore
clumps or spore germination by pressure changes rather than a true resistance.
These same statements need also be considered in the interpretation of data
from Table 3-8,

Table 3-7 shows the results from an analysis of variance performed on
percent survival data of sporeforming isolates after 1 and 24 hr vacuum expc\J-
sures at both -20 and 20°C, Isolate, time, and the interaction isolate-time,

isolate-temperature, and isolate-time-temperature were significant.

The results from applying Duncan's Multiple Range test to these data

are shown in Table 3-8. Isolates 1, 8, and 11 were least resistant to the test

3-9
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Table 3-7. Analysis of variance for sporeforming MM '71 isolates after
1 and 24 hr vacuum exposures at -20 and 20°C

Source of Degrees of Mean F
variation freedom square ratio
Replicates 3 1991 0'. 16
Treatment : 39 5387 2.90%*
A(Isolate) 9 9420 5.06%*
'B(Time) 1 24927 13,39
C(Temperature) 1 351 0.19
AB 9 8797 4.73%*
AC 9 13091 7.03%%
BC 1 299 0.16
ABC 9 14058 7.55%%
Error 117 1861
Total 159

**F-ratios significant at P<0.01 level
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conditions with 94, 87, and 75% survivors, respectively, while isolates 2, 12_,
13, and 18 were most resistant with 117, 111, 147, and 151% survivors,
respectively. A greater number of spores survived the 24 hr vacuum exposure

(123%) than the 1 hr vacuum exposure (98%).

It is recommended that experiments be performed to resolve the
problem area encountered with the sporeforming isolates. These experiments
could consider physical methods of germinating spores such as heat shock or
chemical methods such as a defined synthetic germination medium containing
adenosine-glucose-L-alanine to determine whether the pressure changes associ-

ated with the launch profiles affected spore germination.

3.2.1.4 Conclusion, Certain conclusions can be drawn from these data even
though a problem exists with assaying sporeforming isola‘tes\. These conclu-
sions are: 1) although significant in particular instances, initial populations of
the single isolate most sensitive to the pressure changes were reduced only 0.5
log while the more resistant isolates were unaffected by the pressure changes;
and 2) pressure change, like most physical or chemical agents, elicited a spec-
trum of resistances and emphasizes the requirement of testing as many isolates

as possible before stating conclusions.

3.2.2 Effect of Ultra-High Vacuum and Heat on Survival of Microorganisms

The following is a modification of the abstract of an article accepted

for publication in Space Life Sciences:

A Space Molecular Sink Research Facility (Molsink) was used to
evaluate the ability of microorganisms to survive the vacuum of outer space.
This facility could be programmed to simulate flight spacecraft vacuum environ-

0-10

ments at pressures in the 1 torr range and temperatures (-124 to 60°C)

closely associated with surface temperatures of i.nflight spacecraft.

Initial populations of Staphylococcus epidermidis and a Micrococcus, Sp.

were reduced approximately 1 log while exposed to -105 and 34°C, and approx-

imately 2 logs while exposed to 59°C for 14 days in the vacuum environment.

Initial populations of the Micrococcus sp. were reduced 0.5, 0.8 and

1.6 logs during a 28-day exposure to -105, 34, and 59°C, respectively.
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Spores of Bacillus subtilis var. niger were less affected by the

environment. ‘Initial spore populations were reduced 0.2, 0.3, and 0. 8 log

during the 14-day vacuum exposure at -124, 34, and 59°C, respectively.
3.2.3 Effect of Space Radiation on Survival of Microorganisms

3.2.3.1 Description of Study. The radiation study seeks to determine the

effects of radiation, present in the natural space environment and planetary
trapped radiation belts, on microorganisms associated with unsterilized space-
craft. The present study is limited to an evaluation of the Jovian trapped
radiation belt, Table 3-9, and the low energy (3 keV) solar wind protons. The
selection of dose rate and dose was based on minimum, nominal, and maximum
models derived from previous analytical studies (The Planet Jupiter, NASA
Monograph SP-8069, 1970).

The test organisms, isolated from MM '71 spacecraft, are the same
organisms that were used in the launch pressure profile task. The radiation
experiments are being conducted in a 10-6 torr vacuum at 20 and -20°C to
determine any temperature effect on the survival of irradiated cells. During
the reporting period of this study only the results of the effect of 2 MeV elec-

trons will be reported.

3.2.3.2 Experimental Conditions., The experimental conditions described in

the following sections will be the same for all radiation studies except for the
radiation section which will change to reflect the type particle and energy

being studied.

1., Microbiology. The derivation, culture, test, and assay proce-

dures for the bacterial isolates are described in para. 3.2.1.2,

A photograph of the planchets and test fixture appears in the Semi-
Annual Review, September, 1971, as Fig. 3-4, on page 3-18.

The radiation tests required certain procedures not required for the
launch profile study. Because the radiation facilities were located at a distance
from where the microbiology was performed, it was necessary for the test

fixtures, with inoculated planchets, to be transported between radiation and
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Table 3-9. Test matrix for electron and proton
radiation of microorganisms

Energy Dose ratze (particles Dose
(MeV) cm™“ sec” ) (Krad)
2 10 300 -
,1010 150, 300, 450
1011 300
12 109 300
1010 150, 300, 450
10! 300
25 107 300
1010 150, 300, 450
1011 300

microbiology facilities before and after exposure. This was accomplished by
placing the test fixtures with inoculated planchets into a sealable box fitted with
inlet and outlet valves. The planchets were covered with aluminum foil and the
box sealed. The box was purged with dry nitrogen for two minutes with both
inlet and outlet valves open. Both valves were closed after the purging

operation.

The vacuum chamber was also purged with dry nitrogen during the
placement and removal of the test fixtures which occurred before and after

radiation exposure.

Another procedure. instituted to minimize possible oxygen and vacuum
effects on radiation survival was to evacuate the chamber to 10-6 torr and main=-

tain this vacuum for 0.5 hr prior to radiation exposure.
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A block type of experimental design was used in the performance of
the tests. FEach test fixture held planchets individually inoculated with each of
the fourteen test organisms. One test fixture was maintained at 20°C and
another fixture at -20°C throughout the test. Control test fixtures were treated
in a similar manner but were not irradiated. Each test condition, type radia-
tion, radiation dose, dose rate, and energy, was performed four times. The
planchets were assayed for viable bacteria in the same manner as the launch

profile planchets, para. 3.2.1.2,

Data were analyzed with analysis of variance test and, where statisti-
cal significance existed (P < 0,05), Duncan's Multiple Range test was applied.
A logarithmic transformation of the test data was performed before being sub-
jected to an analysis of variance for all analyses involving the effect of

different doses.

2., Vacuum Equipment. A photograph of the vacuum equipment used

in this study appeared as Fig., 3-3 in the Semi-Annual Review, September, 1971,
A description of the chamber, its operation, and capabilities, also was pre-
sented at that time, For the 2 MeV electron study a 5 inch diameter,

0. 004 inch thick titanium foil window was mounted in the test vacuum chamber

to allow passage of the electrons.

3. Radiation., The 2 MeV electrons were produced by the JPL dyna-
mitron. Prior to the performance of the actual radiation experiments, a two-
dimensional flux map was obtained at the test plane. The map was accom-
plished, with the 0.004 inch titanium window in place, through the use of two

matched Faraday cups (0,67 cm?

aperture), one fixed on the beam axis and the
other mounted on a mechanical goniometer. It was determined that the flux
decreased to 10% of maximum at the annulus or sample location. These results
were obtained for an accelerating voltage of 2.1 megavolt, which provided,
after a calculated energy loss in the window, 2.0 MeV electrons at the test

fixture containing the microorganisms., Calculations of the dose rate in the

3-16
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test annulus in terms of the flux in the beam center were performed in the

form

2
. _8 dE > $ (e/cm”s)
D(rad/s) = 1.6 x 10 8 3% (MeV - cm /g) = 10

where dE/dX is the stopping power of tissue for 2 MeV electrons and ¢o is the ‘
flux in the beam center. ¢ o Was continuously monitored during the exposures
by a Faraday cup mounted in the center of the flange that held the test fixture.
The Faraday cup output was also electrically integrated to provide the dose for

each aperture.

The test matrix for 2 MeV electrons is shown in Table 3-10,

3.2.3.3 Results. The analyses of variance performed on the test data from

2 MeV electron radiation of spacecraft sporeforming isolates are shown in
Tables 3-11 and 3-12. The effects of 150, 300, and 450 Krad exposures at 1010
e crn'2 sec-l dose rate on the isolates are shown in Table 3-11, Isblate, tem-
perature, dose, and the interaction isolate-dose were significant at the P<0.01
level. An approximate one log reduction in survival occurred with the spore-
forming isolates for each 150 Krad exposure, i.e., an increase of dose from
150 Krad to 300 and 450 Krad resulted in population decreases of 1 and 2 log(s),

respectively. The effect of dose and temperature for BSN is shown in Fig. 3-2.

Of additional interest was the difference in radiation resistances of
the isolates with respect to the comparative organism, B. subtilis var. niger.
The radiation resistances of the isolates were greater at 20°C than at -20° C.
At 20°C seven of the isolates were more resistant than B. subtilis var. niger to
150, 300, and 450 Krad, Fig. 3-3, while at -20°.C two, three, and eight were
more resistant than B. subtilis var. niger to the respective doses, Fig. 3-4,
indicating a strong interaction of the relative resistance of the isolates depend-

ing on temperature and dose.
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Table 3-10. Test matrix for 2 MeV electron radiation tests

Number Dose rate, Fluence Approximate Dose,l
of runs e cm~2 sec-! e cm™ exposure Krad
time, min

4 1010 9.7 x 1012 16 300
4 ' 1010 4.85 x 10°° 8 150
4 1010 1.45 x 1013 24 450
4 1011 9.7 x 1012 2 300
4 109 9.7 x 1012 160 300
1All dosages are based on absorption in carbon

The analysis of variance on the effect of dose rate of 2 MeV electrons
is given in Table 3-12. In this case the dose was held constant at 300 Krad and
the dose rate was varied by exposing the organisms at 109, 1010, 1011 e cm-2
sec”l. The analysis shows that there was a significant difference (P < 0. 01
level) due to dose rate. The effect of the three dose rates on percent survival
across all sporeforming isolates is shown in Fig. 3-5. It was found that a dose
rate of 1010 e cm=2 sec-1 resulted in a significantly lower percent survival
than either 109 or 1011 e cm~2 sec~!. At 20°C eight of the isolates were more
resistant than_]_3_. subtilis var. niger to electron fluxes of 109, 1010, and 1011
e cm™2 sec'l, Fig. 3-6, while at -20°C nine, three, and nine isolates were

more resistant to the same respective fluxes, Fig. 3-7.

The analyses of variance performed on the test data from 2 MeV elec-
tron radiation of spacecraft nonsporeforming isolates are shown in Tables 3-13
and 3-14. The effects of 150, 300, and 450 Krad exposures at 1010 e cm~2
sec™1 dose rate on the isolate are shown in Table 3-13, Isolate and dose were
significant at the P < 0,01 level, The effect of dose and temperature on

S. eEiderrhidis is presented in Fig. 3-8, Temperature was not significantly
different at the P < 0, 05 level,
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Table 3-11. Analysis of variance for sporeforming MM'71 isolates" exp.oséd to
140, 300, and 450 Krad of 2 MeV electron radiation at
1010 ¢ cm=-2 sec=-l dose rate

Source of" Degrees of Mean - F
' variation freedom square © ratio?
Replicates ' » 3 0.71 7. 39%%
Treatment 59 3.73 38, 85%*
. A(Isolate) 9 1.52 - 15.87%*
B(Temperature) 1 5.61 58.48%*
C(Dose) 2 96.87 1010.15™*
AB 9 0.14 1.44
AC 18 0.22 2.26™%
BC 2 0.04 0.39
ABC 18 0.09 0.95
Error 177 0.10
Total ' 239

1A logarithmic transformation of the test data was performed before
applying the analysis of variance.

24% Significant at the P<0.01 level.
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Table 3-12. Analysis of variance for sporeforming MM'71 igolates exposed to
300 Krad of 2 MeV electron radiation at 109,
1010, and 1011 e cm=2 sec-! dose rate

Source of Degrees of Mean F
variation freedom square ratiol
Replicates' 3 1.28 0.70
Treatment 59 4.99 2. 75%*
~ A(Isolate) 9 20.03 11.05%**
B(Temperature) 1 15.43 8.52™*
C(Dose rate) 2 12.45 6. 87"
AB : 9 1.68 0.93
AD ' 18 1.50 0.83
BD 2 0.22 0.01
ABD 18 1.74 0.96
Error 177 1.81
Total : 239

L Significant at the P<0.01 level
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'Fig. 3-2. Effect of température and dose of 2 MeV electrons at 1010 e cm_2

sec~l dose rate on Bacillus subtilis var. niger spores
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Fig.~ 3-5. Effect of 300 Krad exposure at different
dose rates on sporeforming isolates
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Table 3-13, Analysis of variance for nonsporeformmg MM '71 isolates exposed
.to 150, 300, and 450 Krad of 2 MeV electron ra.d1at1on at 1010 ¢

cm-2 sec-1 dose ratel

Source of Degrees of Mean F
variation freedom square - ratio?.
Replicates ' 3 1.15 0.91
Treatment 23 13.86
~ A(Isolate) -3 39.15 31.05"
B(Temperature) | 1 1.06 : 0.84
C(Dose) 2 87.59. 69.46"F
AB . 3 2.64 2.09
AC 6 1.15 0.91
BC 2 2.61 - 2.07
ABC 6 0.83 0. 66
Error 69 1.26
Total ' 95

1A logarithmic transformation of the test data was performed before
subjecting to the analysis of variance.

* Significant at the P<0.01 level
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Table 3-14. Analysis of variance for nonsporeforming MM'71 isolates exposed
to 300 Krad of 2 MeV electron radiation at 109,

1010, and 1011 ¢ cm=-2 sec~! dose rates
Source of Degrees of Mean F
variation freedom square ratiol
Replicates | 3 : 5.68 - 2.52
Treatment 23 21.81 9.66™
- A(Isolate) 3 107.79 47.76%%
B(Temperature) 1 18.05 8.00™*
D(Dose rate) 2 8.01 3.55
AB 3 15.41 6.83™
AD 6 9.35 4.14%*
BD 2 4.59 2.03
ABD 6 5.13 2.27
Error 69 2.26
Total ' 95

L Significant at the P<0.01 level
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Fig. 3-8. Effect of temperature and dose of 2 MeV
electrons at Staphylococcus epidermidis
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The relative resistances of the nonsporeforming isolates were

compared to S. epidermidis, Fig. 3-9. It should be noted that the relative

resistances are on a logarithmic scale because of the extremely high relative
resistances. All of the nonsporeforming isolates were more resistant than the

comparative organism, S. epidermidis.

Table 3-14 presents the results from the analysis of variance per-
formed on test data from dose rates of 109, 1010, and 101! e cm~2 sec'l at
300 Krad. Isolate, temperature, and the interactions isolate-temperature and
isolate-dose rate were significant at the P< 0,01 level, Dose rate was signifi-
cant af the P < 0,05 level, The effect of dose rate on nonsporeforming isolates
was similar to that found with the sporeforming isolates. A dose rate of 1010

2

e cm™2 sec™! had the lowest percent survival,

The relative resistances of the nonspcreforming isolates with respect
to dose rate at 300 Krad were compared to S, epidermidis, Fig. 3-10. The
relative resistances of the isolates exposed to 101! e cm=2 sec! at 20°C were
not included because no viable cells of S. epidermidis were recovered after
exposure to the test conditions. All of the nonsporeforming isolates were more
resistant to the dose rates than S. epidermidis. Isolate 5, a yellow pigmented

micrococcus, was considerably resistant to the test conditions.

The radiation resistance to 2 MeV electrons of isolate 5 was similar to
the sporeforming isolates. Table 3-15 shows the relative resistance of this
isolate when compared to irradiated spores of B. subtilis var. niger. The
relative resistance was found to vary from 0. 54 to 21. 5 depending on the test

conditions,

3.2.4 Probability of Growth

The probability of growth is directed towards evaluating and under-
standing the maximum and minimum limits of environmental parameters such
as temperature, pressure, availability of moisture, and atmospheric composi-
tion for microbial growth and to relate this information to possible microbial
growth in extraterrestrial environments. A literature review was conducted
during the current reporting period to establish maximum and minimum limits
of selected environmental parameters permitting growth of bacteria. This

material is presented at this time.
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~

Table 3-15. Relative resistance of nonsporeforming isolate
(No. 5) to 2 MeV electrons®

Temperature Temperature
' - ~-1¢ .
Dose, Kradb Dose Rate, e cm 2 sec !
20°C -20°C 20°C -20°C
150 5.16 2.08 109 6.76 11. 00
300 6.14 | 0.54 | 1010 6.14 | 0.54
450 21.50 7.76 v 10ll 15.70 9.26

a . . o1 .
Relative resistance as compared to B. subtilis var. niger.

bVa.riable dose with constant dose rate at 1010 e cm-z sec-l.

CVariable dose rate with constant dose at 300 Krad.

Siegel, in a recent article (1) states, '"Space Bioscience is itself a

collection of disciplines built upon a highly interdisciplinary base. As in any

other area of scientific endeavors, the major effect is concerned with norms...

He concludes this thought with, '"We believe that the study of biological per-
formance under acute stress generated by extreme environments will reveal
basic properties of living matter that cannot be seen under more or less

'normal' circumstances, .. "

Siegel's remarks serve to introduce the area of the probability of

growth because when the maximum and minimum limits of temperature,

moisture, pressure, and other environmental factors are considered as a basis

for life processes, many of the examples cited appear bizarre. It is very pos-

sible that this appearance is based upon too few experiments - usually of a

serendipic nature - performed to reveal these limits.

This discussion will restrict itself to those severe environments that
allow the growth of a microorganism and will not include conditions that allow

only survival which, in most instances, are of a more severe nature,
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Table 3-16 presents referenced data of the maximum and minimum

limits of particular environmental factors permitting growth.

Table 3-16. Limits of environmental factors governing microbial growth

Environmental Minimum/Maximurh Literature
Factors Limit Cited
Moisture, AW 0.11 3
| 0.999 4
Temperature, °C -34, -18 6, 5
93, 104 7, 8
Pressure
Hydrostatic, atm 1 11
1000 11
Barometric, atm 0.01 12, 13
10.5 14 |
Atmospheric composition 100% CO2 12, 13, 15
100% O2 14
5"/? NH3, 45% HZ’ 50% CH4 16
15% NH3, 35% HZ’ 50% CH4 16
15% NH3, 75% air 16
50% NH3, 50% CH4 17
25% NH3, 25% CH4, 50% air 17
3-34
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3.2.4.1 Moisture. Perhaps the chief constraint on the growth of microorganism:~
is the availability of moisture. From a biological point of view the .availability
of moisture has been described as that amount of moisture, or water, in the
environment that is available for use by the organism. The biologically avail-
able moisture, termed water activity (Aw), is related to the vapor pressure (P)

of the environment at a given temperature by the following equation:

Aw = P/P0 (1)

where Po is the vapor pressure of pure water at an equivalent temperature,

Aw is also related to the equilibrium relative humidity (ERH) of the environment

as follows:

_ ERH
AL T 100

(2)

The Aw concept was thoroughly discussed by Scott (2) and is an inter-
esting concept since temperature, osmotic pressure, and other factors that
affect vapor pressure of an environment at the same time affect its Aw.- Scott
found that growth of a number of bacterial species would not occur below an AW
of 0. 82 which corresponds to a temperature in supercooled media of about
-20°C. The lower limit for mold .growth is an Aw of 0,70 corresponding to a

temperature of -35°C,

Siegel and Roberts (3) reporting on the microbiology of saturated salt
solutions found a salt-dependent bacterium that grew in saturated lithium
chloride nutrient broth whose AW was 0.11. With the recent work of Favero et

al (4) reporting the growth of Pseudomonas aeruginosa in distilled water of

hospital mist therapy units, the maximum and minimum limits of AW permit-

ting growth of miéroorganisms would be 0. 999 and 0. 11.

3.2.4.2 Temperature. Borgstrom (5) reported the growth of many mold and

yeast species in concentrated fruit juice and sugar solutions at -18°C. An

excellent review article by Packer et al (6) cited the work of McCormack who
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isolated a pink yeast capable of growing at -34°C. In this same review article,
the common occurrence of many species of bacteria, molds, and yeast growing

at -5°C to -7°C was evident.

The lower limit of temperature permitting growth of microorganisms
is perhaps dependent upon two factors: 1) temperature as related to enzyme

kinetics; and 2) temperature as related to available water,

The present maximum temperature permitting growth of micro-
organisms was established by the continuing work of Brock et al (7) which deals
with the microbial ecology of hot springs. This recent paper describes the sig-
nificant uptake of radiolabeled subs'trates at 93°C (boiling at the altitude of the
hot spring) while significant uptake did not occur at 97°C (superheated).

Hydrostatic pressure can influence the maximum temperature for
growth and enzyme activity, ZoBell (8) reported the growth of sulfate reducing
marine bacteria at 104°C when accompanied by a hydrostatic pressure of
1000 atm. Eyring et al (9) found that hydrostatic pressure up to 680 atm
increased yeast invertase activity at 40°C and Johnson et al (10) reported that
the thermal inactivation of tobacco mosaic virus protein at 72°C was retarded

by hydrostatic pressures up to 680 atm.

Thus, the lowest temperature permitting growth of a microorganism
is in the neighborhood of -30°C while the highest temperature permitting growth
is about 100°C,

3.2.4.3 Pressure, Maximum and minimum values for two types of pressure

are considered: hydrostatic pressure and barometric pressure.

1. Hydrostatic. The Galathea expedition over the years 1950-1952
brought up deep core samples of marine sediment (11). Samples taken from
the Philippine Trench, representing water depths between 10, 120 m to 10,210 m
with associated hydrostatic pressures higher than 1000 atm (the pressure
depth gradient in the sea is approximately 0.1 atm per meter), had viable bac-
teria ranging from 103 to 106 organisms per gram of wet mud. Some of the

bacteria were obligate barophiles and required 600 to 1000 atm for growth,

The limits for hydrostatic pressure can be set at 1 and 1000 atm.
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2. Barometric. The minimum barometric pressures demonstrating

growth of microorganisms were the Martian simulation studies reported by

Hawrylewicz et al (12 and 13). Spores of Bacillus cereus germinated with out-

growth and subsequent growth in an Earth atmosphere at 10 torr (12) and growth

of Staphylococcus aureus occurred in Earth atmosphere as well as an atmos-

phere of carbon dioxide at 10 torr (13).

Studies into the effects of elevated barometric pressure have chiefly
reported the toxic effect of gases like oxygen at hyperbaric levels on micro=-
organisms. Growth in the environment was generally not determined because
the inferest was directed towards whether the hyperbaric atmosphere exerted

any toxic effect extending beyond exposure.

However, the studies of Caldwell (14) demonstrated growth of

Escherichia coli, Staphylococcus albus, Staphylococcus aureus, Pseudomonas

pyocyaneus, Aspergillus niger, and Mucor hiemalis in hyperbaric air at

10,5 atm.

The barometric range permitting growth of microorganisms appears

to be approximately 0.01 to 10,5 atm.

3.2.4.4 Gaseous Environment. In close association with maximum and mini-

mum limits of environmental parameters like temperature and pressure the
possibility of microorganisms growing in gaseous environments other than air

(Earth atmosphere) should also be considered.

The previously cited Martian simulation (12 and 13) and hyperbaric
studies (14) demonstrated growth of species of bacteria and molds in 100%
CcoO,
alga, Cyanidium caldarium, in 100% CO, at 1 atm showed that after an adapta-

and 100% o, atmospheres, respectively. The reported studies with the

tion period of several days the growth rate and packed cell volume of the CO2

grown cells exceeded that of the air grown control group (15).

The severe environment studies of Siegel and Giumarro (16) showed
that microorganisms grew on specimens of Euphorbia and other xerophytes
during 2 months in ammonia-methane, ammonia-hydrogen, and é.mmonia-air
atmospheres. In spite of the toxicity of ammonia a variety of bacteria, molds,

and yeast appeared to proliferate in these environments.
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Additional studies by Siegel and Giumarro (17) demonstrated the growth
of a bacterial species, Kakabekia umbellata Barghoorn, in atmospheres of 50%
ammonia-50% methane and ammonia-air (39% N, 10% O,, 25% CH4, 25% NH,,
1% other, including COZ)'

There are two biological events that need be considered in future
missions to the outer planets: 1) the possibility of life forms existing in a
planetary atmosphere like Jupiter; and 2) the possibility of Earth life forms

growing in a planetary atmosphere like Jupiter.

The recent review article by Sagan (18) lends credence to both events.
From a literature survey which includes his own studies, Sagan presents strong
evidence for the existence of organic molecules on Jupiter and further, if
organic molecules are present, then consideration of the existence of life forms
on that planet becomes germaine. He indicates that at a level approximately
50 km below the ammonia cirrus clouds water and aqueous ammonia solutions
are present at temperatures approaching 300°K and pressures of the order of
tens of atmospheres. He indicates that heterotrophy appears to be the simplest
mode of life on a planet containing abundant organic molecules produced abio-
genically, but he cautions that photosynthetic autotrophy is also a distinct pos-
sibility. He stresses the requirement for performing Earth-based experiments
utilizing a mixture of methane, ammonia, and water at room temperature and
1 atm pressure as a medium for microbial growth studies. The previously
cited studies of Siegel and Giumarro (16, 17) indicate the distinct possibility of

Earth based microorganisms surviving and growing in this type of environment,

The observation of Vallentyne (19) seems quite appropriate in conclu-
sion, ''"The fact that most living species conform physiologically and ecologi-
cally to average Earth conditions should not be taken to indicate any inherent

environmentally based physiochemical conservatism of living matter. "
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3.2.5 Release of Microorganisms From Solid Materials

The release of microorganisms from solid materials were studies
performed under JPL Contract Number 952916 by The Boeing Company, Seattle,
Washington.

The following, taken from the final report, is the authors' abstract of
those studies (Gustan, E.A., and Olson, R.,S. '""Release of Microorganisms
from Solid Materials', Final Report JPL Contract No. 952916, The Boeing Co.,
Seattle, Washington, May 1971).

This contract consisted of three study phases that provided informa-
tion on the release of microorganisms by hard impact and determined the effect
of aeolian erosion on the release of microorganisms. The first phase was
initiated to determine the efficiency of grinding, as compared to dissolution,
for recovery of microorganisms from solids. An adjustment constant of 20
was derived from the data that can be used to equate bacterial spore counts

obtained by grinding with those obtained by dissolution.

Phase II was conducted to determine the percentage of microorganisms
released due to hard impact of Eccobond onto sand. This study provides addi-
tional data to JPL Contract Number 952511. In this study, Eccobond was
impacted onto sand at velocities of 168, 457, 945 and 1554 m/sec. The results
showed that less than 1 percent of the available organisms was released by

impact.

The Phase III study was initiated to determine the percentage of bac-
terial spores released from methyl methacrylate and Eccobond by aeolian
erosion. Sand, accelerated by air or carbon dioxide, was used to erode 0. 25
grams of material from one gram discs. The results showed that less than

1 percent of the available organisms was released by the erosion process.

3.3 RELEVANCY TO PLANETARY QUARANTINE

The natural space environmental studies are di'rectly related to
Planetary Quarantine by providing data and conclusions as to how the natural
space environment effects survival of microorganisms. Certain summary
statements, based upon results to date, can be made: 1) spacecraft launch

pressure changes cannot be considered as an agent to substantially reduce
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spacecraft bioburden which, if true, could lead to relaxation of present '
planetary quarantine constraints; 2) current experiments, utilizing forms of
radiation encountered in the natural space environment, will provide useful
information that can be related to the possible reduction of spacecraft bio-
burden as a result of exposure to the environment; and 3) the release of micro-
organisms from solid materials and a previously completed study, release of
microorganismé from impacted materials, established for Planetary Quarantine
consideration that less than 0.1 log of the microorganisms available in the test

materials were released by either impaction or aeolian erosion.

3.4 PROBLEM AREAS

With the exception of the sporeformer viable cell counts of the launch

profile studies, para. 3.2.1.3, no problems were encountered.
3.5 FUTURE ACTIVITIES

3.5.1 Effect of Simulated Spacecraft Launch Pressure Changes on Survival
of Microorganisms
With the exception of experiments suggested in para. 3.2.1.3 of this
report no future activities are planned. These experiments were suggested in
an attempt to find out why, with particular isolates, the viable cell counts after
exposure to the test conditions were higher than viable cell counts of populations
initially present when the test conditions did not permit proliferation. Whether

this was a result of the test environment or recovery medium is not known at

this time.

3.5.2  Effect of Ultra-High Vacuum and Heat on the Survival of

Microorganisms

Experiments will be performed to determine the combined effects of
long term exposure to space vacuum and temperature on the survival of micro-
organisms isolated from MM '71 spacecraft. The fourteen organisms pre-
viously used in the launch pfofile studies and currently being used in the
radiation studies will be tested for their resistance to space vacuum and temp-
erature. A test fixture has been designed to permit the testing of the fourteen

organisms at four temperatures (-40°C, 25°C, 40°C and 55°C). After various
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exposure times, up to 180 days, microbiological assays for survivors will be

conducted.

3.5.3 Effect of Space Radiation on Survival of Microorganisms

The future activities of the space radiation studies will be concerned
with the analysis of data from the 12 and 25 MeV electron tests; the analysis of
data from the 3 keV and 2 MeV proton tests; and the scheduling and completion

of the 12 and 25 MeV proton test matrixes which will also include data analysis.

3.5.4 | Release of Microorganisms from Solid Materials

No future activities planned.

3.5.5 Effect of Space Ultraviolet Irradiation on Survival of Microorganisms

Future activities will involve determining the effect of ultraviolet
irradiation in a space vacuum on the survival of microorganisms isolated from
MM '71 spacecraft. Preliminary discussions have considered possible dose
rates that will be achieved from different spacecraft missions to Mars or
Jupiter, equipment requirements for the experiments, and the initiation of a

literature survey.

3.5.6 Probability of Growth

Future activities will involve the development of possible analytical
approaches to utilize existing knowledge of maximum and minimum limits of
terrestrial environmental parameters for bacterial growth and predict whether
or not particular regions of a planetary environment could support growth of

terrestrial bacteria or life forms.

3.6 PRESENTATIONS

Knittel, M.D., Favero, M, F,, and Green, R, H, ""Microbiological
Examination of Electrical Cable from Surveyor III", Presented at

Second Annual Lunar Conference, Houston, Texas, January, 1971,
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Knittel, M.D., Godfrey, J.F., Hagen, C.A. and Taylor, D.M.

"Survival of Spores and Nonspore Forming Bacteria During Simulation of a

Spacecraft Launch Pressure Profile'. Presented at American Society for

Microbiology Annual Meeting, Minneapolis, Minn. May, 1971.

The following presentations were made at the semi-annual NASA

Sterilization Technology Seminar, Seattle, Washington, June, 1971.

Hagen, C.A., "Effect of Vacuum Profile on Survival of
Microorganisms''.
Olsen, R.L., "Release of Microorganisms from Solid Materials''.

Taylor, D. M. "Effects of Space Radiation on Survival of

Microorganisms''.

The following presentations were made at the annual Committee on

Space Research meeting, Seattle, Washington, June, 1971.

Gustan, E.A., '"Effects of Aeolian Erosion on Microbial Release

from Solids''.

Taylor, D.M., "A Re-Evaluation of Material Effects on Microbial

Release from Solids'".

PUBLICATIONS

Hagen, C.A., Godfrey, J.F., and Green, R.H., "The Effect of
Temperature on the Survival of Microorganisms in a Deep Space

Vacuum''. Accepted for publication in Space Life Sciences, 1971,



“900-556

SECTION IV
PLANETARY QUARANTINE SUPPORTING ACTIVITIES
NASA No. 191-58-28-02-55
Cognizance: D. M. Taylor
Associate Personnel (AVCO Corp.): C. Hagen, G. Renninger

G. Simko, C. Smith

4.1 INTRODUCTION

Planetary Quarantine Support Activities include the technical
assistance for all Space Research and Technology (SR&T) tasks and the
operation and maintenance of the microbiological laboratories at JPL. This is
accomplished through a contract with AVCO Corporation, which at the present
time, employs individuals constituting a multi-disciplinary group of contamina-
tion control engineers, microbiologists, physicist, statistician-computer

scientist, and associated support personnel.

4.2 SIGNIFICANT ACCOMPLISHMENTS

In addition to the technical support provided to other SR&T tasks,
personnel of the Planetary Quarantine Laboratory were involved with the

following tasks:

1) The isolation and classification of bacteria recovered from MM '71
spacecraft for possible future use in studies involved with deter-
mining bacterial resistance to space environmental parameters

like vacuum and different types of radiation.

2) The evaluation of a possible relationship existing between non-

viable particle size and bioburden.

3) Environmental monitoring for the presence of'molds in spacecraft

assembly and test areas at JPL and AFETR.
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4.2.1 General Support

Some of the tasks, although reported elsewhere in this document, are
listed in this section since the associated personnel are on virtual full time

assignments to these tasks.

4.2.1.1 Spacecraft and Monitoring Methods and Procedure (NASA Task

No. 191-58-63-03-55). A contamination control engineer and two microbiolo-

gists are involved with the refinement of techniques and procedures necessary
to estimate the microbiological burden on spacecraft, the bioassay storage and
data retrieval system, and the documentation and certification procedures for
verification and environmental parameters in laminar airflow and nonlaminar
airflow facilities. The contamination control engineer and one microbiologist
performed similar tasks at AFETR for approximately 3 months prior to

MM '71 spacecraft launch.

4,2.1.2 Natural Space Environmental Studies (NASA Task No. 191-58-62-

04 -55), Four microbiologists and one vacuum engineer are involved with deter -
mining the effect of simulated spacecraft launch pressure changes on the survival
of bacteria isolated from MM '71 spacecraft; determining the effect of space
radiation, electrons and protons at different energies, fluxes, and doses, on the
survival of bacteria isolated from MM '71 spacecraft; and providing assistance
for the design, construction, and operation of vacuum equipment required for

the above studies,

4.2.1.3 Thermal Resistance of Microbes in Hardware Assembly Areas (NASA
Task No. 191-58-61-06-55), This task is concerned with determining the dry

heat resistance at 125°C in both air and nitrogen atmospheres of spores iso-
lated from MM '71 spacecraft and associated assembly and test areas at JPL

and AFETR,

4.2.1.4 Post Launch Recontamination Studies (NASA Task No. 191-58-63-

11-55). A physicist is involved with determining the effect of flight environ-

ments on vehicle burden redistribution.

4.2.1.5 Microbial Burden Prediction Model (NASA Task No. 191-58-63-06-55).

A statistician-computer scientist is involved with development of a computer
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code for predicting microbial burden on spacecraft surfaces during system

assembly and test procedures.

4.2,2 Isolation of Bacteria From MM '71 Spacecraft

The previous Semi-Annual Review reported the procedures used for
the isolation and identification of bacterial isolates recovered from four stage

burden microbiological assays.

Bacterial isolates were recovered from a subsequent stage burden
microbiological assay at AFETR. The isolates were tentatively grouped
according to source, i.e., isolates recovered from solar panel front, shroud,
and remainder of spacecraft surfaces sampled at the encapsulation assay. The
isolates are being retained for future identification and possible experiments

related to the Natural Space Environmental Studies.

4.2.3 Relationships Between Nonviable Particles and Bio-Burden

The assay procedures, using membrane filters, were described in the
previous Semi-Annual Review. The procedures were conducted in spacecraft
assembly and test areas at JPL and AFETR. The data are being statistically

analyzed and will be reported upon at a later date.

4.2.4 Environmental Monitoring for Molds

The test procedure adopted for monitoring of mold fallout in space-
craft assembly and test areas was described in the previous Semi-Annual
Review. At that time, data reported up to 15 January, 1971 showed a trend
indicating the numbers of molds settling out from the environment were

greater than the numbers of bacterial spores.

Figure 4-1 presents data from 22 January, to 14 May, the last test
prior to spacecraft launch. The data appear as plots of the weekly average of
molds settling per square foot togefher with the high and low values at a par-
ticular sampling site for that week. The curve below the x-axis represents
zero mold count at a particular site; the low for the week. The weekly average

of bacterial spores settling per square foot is included for comparison.
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The same general trend previously rveported was evident: the weekly
average of molds settling per square foot was higher than the weekly average'
of bacterial spores. There also appeared to be less mold and bacterlial spore
fallout at AFETR than at JPL though it is not known at this time whether the

difference is significant.

4.3 RELEVANCE TO PLANETARY QUARANTINE

The present activities benefit planetary quarantine programs in the

following manner:

1) The establishment of an existing relationship between nonviable
particles and bio-burden would allow the standardization of a rapid

method to determine spacecraft bio-burden.

2) The enumeration of molds, although not a part of NASA standard
procedures, does raise questions related to planetary quarantine
analyses that consider bio-contamination allocations and survival

of molds in space environments.

4.4 PROBLEM AREAS
None
4.5 FUTURE ACTIVITIES

The continued effort of Planetary Quarantine Support Activities will be
directed toward maintaining that required level of technical competency in the

area of planetary quarantine. The following tasks are to be concluded:

1) Evaluate data to substantiate possible association of bio-burden

with the size of nonviable particulate matter.

2) Enumerate sporulating bacteria recovered from nonheat shocked
samples taken during the encapsulation microbiological assay

milestone at AFETR.

4.6 PRESENTATIONS AND PUBLICATIONS

None
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SECTION V

SPACECRAFT MONITORING METHOD AND PROCEDURES
NASA No. 191-58-63-03-55
Cognizance: D.M. Taylor, R.C. Koukol

5.1 INTRODUCTION

During the second semi-annual period of the fiscal year 1971
(1 Jan - 30 June), the task efforts were sequential to that.reported in Docu-
ment 900-484; namely, spacecraft monitoring and environmental monitoring
for post-encapsulation studies at JPL facilities and the Air Force Eastern Test

Range, Florida. The objectives were:

1) Refine the techniques and procedures necessary for the direct
biological estimation of bio-burden on an assembled spacecraft

or subsystem.

2) Provide data to update the input parameters for the microbial

burden prediction model.
3) Provide microbial isolates for other studies.

Furthermore, the problems identified in the Planetary Quarantine

Advisory Comumittee reports were addressed to developing criteria for:

1) Establishing the number of samples required for direct estimation

of bio-burden on a surface.
2) Determining where to sample a surface.

3) Estimating the burden on a specific surface from individual

samples.
4) Methods of combining estimates from a number of surfaces.
The approaches to meet these objectives and problems were as follows:

1) To determine the relationship of environmental cleanliness and

the spacecraft bio-burden.

2) The development of sampling procedures for problem areas, viz:

cabling, thermal blankets, solar panels, and high gain antenna.
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3) The refinement of bio-burden estimation consisting of number of

samples taken, location of sample site and data extrapolation.

5.2 SIGNIFICANT ACCOMPLISHMENTS
5.2.1 Relationship of Environmental Cleanliness Level and Spacecraft
Bio-Burden

This activity was continued for data collection pertaining to the
environmental sampling and spacecraft monitoring for STAGE VII Pre-

Encapsulation and STAGE VIII Decapsulation.

5.2.1.1 Environmental Monitoring. The methods employed for data gathering

in Document 900-484 were continued. The data obtained is shown in the figures

described below.

1) Figures 5-1 and 5-2 depict the mean particle levels from Royco
Sampling in the SAF High Bay-Hanger AO and the SAF Tent Area,

respectively.

2) Figures 5-3 and 5-4 depict the mean particle levels from Reynier
Sampling in the SAF High Bay-Explosive Safe Facility and the SAF

Tent Area, respectively.

3) Figures 5-5 and 5-6 depict both the viable and heat shocked
particle levels from the settling strips in the SAF High Bay-
Explosive Safe Facility and the SAF Tent Area-Explosive Safe

Facility, respectively,

The particulate data obtained for the STAGE VII and STAGE VIII
phases are observed to be within prescribed limits: Class 100, 000 for the SAF
High Bay-Explosive Safe Facility High Bay; Class 10, 000 for the Hangar AQ;
and Class 100 for the tents in both SAF and Explosive Safe Facility. The viable

counts recorded show a correlation respective to the particulate data obtained

from the fallout strips.

5-2
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5.2.1.2 MM '71 PTM Monitoring. This phase was conducted to develop data of

the respective bio-burden levels for the 8 stages indicated in Document 900-484.
Specifically, during this rep.orted period (1 Jan - 30 June, 1971), data was
obtained for STAGES VII (Pre-Encapsulation) and VIII (Decapsulation). Fig-
ure 5-7 shows the bio-burden assay data for all stages (I thru VIII). An evalu-
ation of this data will be assessed for the relationship of environmental cleanli-
ness and spacecfaft bio-burden. In addition, the sequence of activities related
to the hardware handling for shipment offered an opportunity to gather data
respective to pre-shipment and post-shipment. Assays were taken on items of
equipment in an ambient environment during shipment and an inert environment
(NZ) during shipment. Data is presented in Figs. 5-8 and 5-9. A relative
significance is noted due to the variance of environments. A l-log decrease of
vegetative cells is recorded. Both reductions are attributed to a natural

die- off.

5.3 PROBLEM AREAS

The interconnecting cabling, as indicated in Document 900-484, remains
an unsolved problem. Due to the time limitations, no effort was undertaken

toward resolving this problem.

5.4 FUTURE ACTIVITIES

\

5.4.1 Determining Where to Sample a Surface

The data obtained for each planned milestone (STAGES I thru VIII) will
be assessed considering the surface nodosity, component geometry, and

environmental aerodynamics.

5.4.2 Data Extrapolation

Interface with the task ""Microbial Burden Prediction Model', shall

provide statistical studies for determining:

1) The relationship between micro-organisms and specific types of

hardware surfaces.

2) The distribution of spore and non-spore isolates.



900-556

10,000 T T T » I T [ T |
[—1 VEG CELLS ] _
HEAT SHOCK
m
1,000 I— . . 1
:
%
4 4
2 % 2
100 — % % - -
2 2 g
2 1 |V 2
4 1|l /
2 M % % ) 2
1 B8 g | |7 4
% % 7 % 2
% 2 Z %
%
Z Z 7
T 19 |9 |7 2 ‘.
2 4 7 ] ]
1210 19 19 14 10 |3 |4
4 % 2 2 2 2
] ] 7 2 ] /]
% ] 2 % 2 %
% 4 2 % % %
1 U U 10 18 U |d |7
7 2 4 7 ] ] 4 %
] % 7 ] 4 4
2 % 7 f % ] % 7
1 77’ A U 1Y
6/15/70 7/23 8/9 8/12  8/31 1/18/71 3/8 3/24
INITIAL PRE-SOL POST WT & POST- PRE PRE- DECAPS
BURDEN SIM SOL CG VIB SHIP ENCAPS
SIM

Fig. 5-7. Bio-burden assay data for all stages

5-16



900556

10000 — I I T T

VEG 3
F HEAT SHOCK

1000 ._

100 |- _
% 7

2

% 7
7 4
2
% ¢
2
% ¢

10 ~ 4 7 —
/ e
4 4
7
% 2

2
4 .
/ /
1 7 1 1
2/9/71 2/18/71
PRE-SHIP POFT—SHIP

3
{

Fig. 5-8. Comparison of pre and post shipment assays,
ambient environment

5-17



900-556

) SOLAR PANEL
P7777777) OCTAGON

80 —

_JVEG

70— -

60 — -

50 = —

NN
|

40—

30 - % -

JVEG

JTHEAT SHOCK
JHEAT SHOCK

NN\
S———
N

A
PRE-SHIP POST-SHIP
297 218 71

Fig. 5-9. Comparison of pre and post shipment assays,
inert environment (NZ)

5-18



900-556

3) The effect on the total burden through varying the number of

samples taken on a given piece of hardware.

PUBLICATIONS

None

5-19
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SECTION VI
MICROBIAL BURDEN PREDICTION MODEL
NASA No. 191-58-63-06-55
Cognizance: A.R. Hoffman

Associate Personnel: D. Winterburn (AVCO), R. Koukol

6.1 INTRODUCTION

The Microbial Burden Prediction Model (MBPM) and its associated
computer program have been developed as tools for: 1) supplementing the
biological assays of a spacecraft by simulating the microbial accumulation
during periods when assays are not taken; 2) reducing the number of biological
assays that are required; and 3) predicting the microbial loading on the lander
prior to sterilization and the other non-lander spacecraft equipment prior to

launch.

When this effort was begun over two years ago, a model was needed
that would permit a priori analysis of the manner in which a spacecraft was
assembled in order that biological monitoring could be planned and scheduled,
and optimum times for sampling determined. Also, the model could be used to
optimize the assembly flow for maintaining the microbial burden at an acceptable
level. During the actual assembly, the model can be used as a quality assur-
ance control tooi to ensure that the microbial burden is not becoming excessive
on a given piece of hardware. Finally, a reasonable and meaningful estimate is
needed at the time of encapsulation for an orbiter to be used in the post-launch
planetary quarantine analysis. The prediction model, validated and verified on

a continuing basis by direct assay methods, can provide such an estimate.

Early in the development of the MBPM, it was necessary to choose a
method for dealing with several random variables iﬁ the model. With a desire
to obtain a complete view of the distributions of resultant variables while using
minimum computer run time, the decision was made to represent these vari-
ables as discrete probability density functions, or histograms. Since the details
of histogram manipulation had not been fully developed, resulting difficulties

and limitations were not completely understood (such as distributions
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concentrating in the highest valued histogram interval). The Phase IX of the

Math Model contract with Martin Marietta refined the histogram method of
combining random variables to obtain more realistic predictions of the micro-

bial burden on spacecraft.

6.2 SIGNIFICANT ACCOMPLISHMENTS

During this reporting period, the Mariner '72-2 actual assembly and
test sequence emulation was completed. The assembly sequence of a typical
solar panel was also emulated: it was considered important to track a typical
solar panel because the combined surface area of the solar panels represents
60% of the entire spacecraft exposed area. Because predicted results for the
solar panel exhibited wide fluctuations not fully understood, further study has

been initiated.

Environmental microbiological data was assemblzd and used to con-
struct new input histograms, and assembly operaticns were modified to reflect
the true operations. These environmental histograms describe the fallout, or
background contamination, consisting of spore and nonspore forming organisms
in the different environments the spacecraft is subjected to during its assembly
(JPL: Tent, High Bay, Vibration Area (Out of Tent), Simulator, Acoustic Lab;
ETR: Hanger AO, Explosive Safe Facility (In Tent), Encapsulation).

The computer program was used to obtain predicted burdens on
exposed surfaces for the Mariner '71-2 actual assembly and test emulation

from Stage 6 until launch. A graph of this burden is shown in Fig. 6-1.

Enumeration of the microorganisms on the surface of a spacecraft is
necessary for sterilization process determination of planetary landers and for
preparation of probability estimates for the planetary quarantine prelaunch
analysis. The methods developed and results obtained show the usefulness and
necessity of the model in predicting this microbial burden, and that from any
microbial accretion process in general. The model thus lends itself to related
work in water and air pollution, sewage treatment monitoring and control, and

work in similar fields.

6-2
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6.3 PROBLEM AREAS

Because of the vast excursions of the predicted solar panel burdens,
investigation is being made into properties of the model which could result in
such variations when only one part is affected, e.g., the ways the model
attributes burden accumulation to operations, environments, operation times

and cleanings.

6.4 FUTURE ACTIVITIES
Tasks proposed for the future include:

1) Comparison of predicted burdens with those of spacecraft direct

assay estimates.

2) Comparison of results using both histograms based on Mariner 67

data and current data.

3) Comparison of results of the old program to those of the new pro-

gram (using current data).

Sensitivity studies similar to those performed on the Mariner 67
actual sequence and the Mariner 171 planned sequence should also be performed
to provide data which will allow analyses and a better understanding of con-

tamination processes.
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SECTION VII
PLANETARY QUARANTINE CONSTRAINTS FOR ADVANCED MISSIONS

NASA No. 191-58-63-10-55
Cognizance: C.C. Gonzalez

Associate Personnel: W. Stavro

7.1 INTRODUCTION

The objectives of this task are to perform analyses necessary to define
planetary quarantine constraints, determine the parameters to which constraints
are sensitive, the mission strategies which satisfy these constraints, and

identify problem areas which will require further research.

Current models of the atmospheres of Jupiter and Saturn indicate the
possible existence of regions with conditions favorable for growth of terrestrial
microorganisms. To ensure that the environments of the outer planets are not
altered biologically, a study was performed to identify planetary quarantine
constraints and problem areas. Potential mission strategies compatible with

both mission objective and planetary quarantine constraints were investigated.

Possible sources of contamination were identified and related to
mission events, flight-path-control strategies, and interplanetary environments.
Relevant parameters to which planetary quarantine analyses were considered
most sensitive were selected and included in subsequent analyses. A prelimi-
nary allocation model was developed and analyses performed to obtain proba-
bility of contamination values for the most significant sources. Potential

problem areas in need of future research were identified.
7.2 SIGNIFICANT ACCOMPLISHMENTS

7.2.1 Tasks Conducted

The Planetary Quarantine Analyses for Advance;d Missions involvéd the
identification of contamination (sources and the suballocation of probability of
contamination) among the various sources. A total allocation of 7.1 x 10_5
was assumed for each planet. Since the objective of the current analysis is not

a detailed study, only major contributing sources were considered.

7-1
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This report will present the results to date of the study to identify
contamination sources and the relative importance of each. The main sources
of contamination are considered to be large impactables such as the spacecraft
and launch vehicle. In order to determine whether a contamination source will
result in microbiological contamination of the planet in question, the initial
steps involved trajectory considerations. (The details of the trajectory and

navigation analysis were presented in the previous Semi-Annual Review,)

In addition to performing the large impactable analyses, one of the
tasks performed was the identification of areas for future research. These
areas.pertain to work needed to be performed by the Planetary Quarantine
Community in order that future projects may perform a complete PQ analysis

for an outer planets mission.
7.2.2 Results of Work

7.2.2.1 Analyses. The results of trajectory and navigation analyses were

based on the following assumptions:

1) The basic characteristics of a mission can be determined once
the launch opportunity, spacecraft weight, and launch vehicle are
specified. The launch vehicle considered in this study is the
TITAN IIID/Centaur/Burner II (2300). Both 5-segment and
7-segment Titan vehicles have been considered. The increased
performance of the 7-segment over the 5-segment TITAN may be
used to either decrease flight time or increase injected weight.
The flight time of the 1976 J-S-P opportunity, however, is con-
strained by geometry (specifically the Jupiter fly-by altitude)
and flight times to Pluto of less than 8.7 years are unattainable.
The 1977 J-S-P opportunity does not have this geometrical con-
straint and the 7-segment TITAN can be used to decrease flight
time. Because of these basic characteristics of the '76 and '77
J-S-P missions, it was decided to consider, for the purpose of
this study, a 5-segment TITAN for the '76 opportunity and the
7-segment TITAN for the '77 opportunity.

7-2
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3)

4)
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6)

7)

8)
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The spacecraft weight of 1450 lbs assumed for both '76 and '77

J-S-P missions was based on the spacecraft developed in the TOPS

project.

In defining the separation and retro maneuvers, certain param-
eters were assumed. The Spacecraft-Launch Vehicle (S/C-LV)
velocity and mass ratios were taken from the Mariner Mars 1969
mission. The appropriate direction parameters of the separation
and retro maneuvers were taken from the proposed Viking Mars
1975 mission because Viking has a parking orbit as do the outer
planet missions. Both these missions and currently proposed

missions studied here are fly-bys.

The times of separation and retro were assumed to be the same

as injection due to a lack of such details at this time.

The time of midcourse corrections was assumed to be as given

in Fig. 7-1.
Error mapping was assumed to be a linear process.

The probability of success for correction maneuvers was assumed

to be 0.97.

The optical approach measurement errors was assumed to be

6 arc-seconds.

7.2.2.2 Results. The following summary of the results of the navigation

analyses also provides identification of areas for future research.

1)

2)

The probability of impact allocation required by the launch
vehicle, assuming the same capability for separation and deflec-
tion as in c'urrent missions, is of the same order of magnitude as
that for the S/C. This departs greatly from previous missions
where suballocations for the launch vehicle were a fract’ion of

total allocation.

Unbiased nominal trajectories of the Earth-Jupiter leg will

violate the probability of impact constraint at Jupiter.

C o~
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3)

4)

5)

6)

7)

8)

2

10)

11)

900-556

In the Earth-Jupiter leg, only the injection maneuver needed to

be biased. Maneuvers' 1, 2, and 3 can be aimed at the desired

aim point without violating planetary quarantine (PQ).

The AV (needed additional velocity) penalty for removing the
biasing of the injection maneuver was found to be of the order
20 m/sec based on the assumptions and parameters selected for

the baseline analysis.

If Jupiter encounter is achieved within the expected accuracy
(accuracy of the approach guidance instruments), the planetary
quarantine constraint at Saturn will be violated. This violation

can be satisfied by biasing Jupiter's aim point.

The AV penalty for removing the required biasing of Jupiter's aim

point is of the order 10 m/sec.

Most of the S/C impact allocation for the Earth-Jupiter maneuver
can be given to the injection (as opposed to allocating it equally

between the injection and midcourse maneuvers).

The optimal biasing strategy for the injection maneuver based on
the minimum AV required to correct the biasing is the strategy
which minimized the expected square of the magnitude of the next

midcourse correction.

The optimal strategy used in biasing the Jupiter aim point was
that which minimizes the required post Jupiter AV to remove that

bias.

The preliminary analysis performed for the Saturn-Pluto leg
indicates that due to the large distances and small target planetary
capture radius involved, biasing of the pre-Saturn maneuver is

unnecessary.

Due to the lack of available software for tatgeting and navigation
of multi-planet gravity assist missions, the exact biasing of post-
Saturn maneuvers required to satisfy a PQ constraint for Pluto |
was not determined. However, it is recommended that a realistic
probability of contamination constraint which can be met without

putting severe penalties on a mission be applied to Pluto.
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12) It was determined that small AV errors in the midcourse
maneuvers did not propagate rapidly due to high injection energies
of the trajectories considered. Because of this property, any
type of abort bottle system to be carried on board to alter the
trajectory to satisfy PQ would be too large to be of practical

interest.

13) The assumption made at the outset of the current task, that the
probability of impact of Saturn by the launch vehicle is not
significant, should be investigated further due to the high proba-
bility of impact of Jupiter by the launch vehicle. Note that this
high probability may be decreased by increasing the launch
vehicle /spacecraft separation velocity and the deflection velocity

of the launch vehicle.

14) Due to the rather large penalties imposed by biasing, appropriate
analyses should be performed to understand and eventually qualify
all possible factors which help reduce S/C (or LV) burden. Some
of these factors are the thermal vacuum space environment,
Jupiter's radiation belts, the entry heating of spacecraft for a

planet possessing an atmosphere similar to that of Jupiter, etc.

15) This study has illustrated the need for further development of
tools that include PQ effects in the study of multiple-planet

mission navigation.

7.2.3 Meaning of Results to Planetary Quarantine

The results of the large impactable analysis indicate that a multiple
outer planet fly-by gravity assist mission, of the type analyzed, will have to
include biasing in the navigation plan if it must be accepted that the probability
of contamination given impact is one. Fuel penaltiés could prove to be signifi-
cantly large. Therefore, it would seem that future areas of concentration
should include the possibility of microbial burden reduction due to the effects

of the natural environments.
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7.3 PROBLEM AREA

The main problem area encountered so far is the lack of navigation

and maneuver analysis data on multiple outer planet mission. Such data has

been generated in this task for purposes of analysis.

7.4 FUTURE ACTIVITIES

7.4.1 Work Planned for Next Six Months

The following task will be co'mpleted in the next six months.

7.4.1.1 Preliminary Jupiter-Uranus-Neptune Mission PQ Analysis. Perform

a PQ analysis to identify problem areas significantly different from a J-S-P

mission. For instance, the greater distances involved lead to larger naviga-

tion uncertainties than those currently anticipated for a J-S-P mission. Also,

there is a greater amount of uncertainty in the state of knowledge of the outer

two giant planets than for Jupiter and Saturn.

The following tasks will be started in the next six months:

1)

2)

Study of entry heating of spacecraft or related debris into an

outer planet atmosphere. The heating associated with atmospheric
entry (Jupiter or Saturn) may be sufficient to render a spacecraft
or related debris both internally and externally sterile by the

time it reaches regions of the atmosphere that are of biological
interest. Previous studies have not paid sufficient detail to
various types of shapes, sizes, and materials of impacting

bodies. Also, ablative characteristics were not considered in

sufficient detail to understand effects of heat biockage.

Provide values of environmental parameters for Uranus, Neptune,
and Pluto, and satellites of the outer planets. The Natural Space
Environments Group at JPL is preparing a monograph of the
planets Uranus, Neptune and Pluto. The results of this effort
ought to be adapted for use in PQ analyses for outer planet
missions. This is analogous to the use of monographs on the
interplanetary environments, and Jupiter and Saturn for this pur-

pose on the current task, and reported in a separate document.

-7
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They will also provide available parameters for the satellite of

the outer planets.

3) Analyze problem areas not considered in the current J-S-P PQ
analysis. The analyses would be based upon and complement
current (fiscal 1970) J-S-P analyses, with the use of selected
optimal mission strategies. It would also use up-dated space-

craft, launch vehicle, and mission parameters.

a) Include PQ analysis for satellites most likely to have biologi'—
cal interest. A great deal of interest is being shown in
selecting trajectories for a J-S-P mission which will bring

the spacecraft close to the satellites of Jupiter and Saturn.

b) Consider the problem of satisfying conflicting PQ constraints

(if any exist) such as a planet and its satellites.

c) Complete particulate debris analysis, especially the deter-
mination of critical periods in the trajectory for transport
of debris for specific ranges of physical parameters to the
planet of interest. The probability of encountering Saturn's
rings by a fly-by spacecraft should be determined and reflected
in the particulate debris analyses. A particulate debris
analysis should also be performed for the launch vehicle. The
hazards of flying through the asteroid belt and Saturn's rings
should be considered in an analysis of the probability of S/C

disintegration.

7.4.2 Additional Required Work

The following work is required to better understand the problems of
planetary quarantine analyses for outer planet mis sions and is an addition of the
work described in para. 7.4.1. Included there were starts on tasks, to be

completed later, which also fit into the category of tasks considered here.

7.4.2.1 Preliminary Jupiter Orbiter and/or Entry Probe Mission PQ Analysis.

A PQ analysis similar to that currently being performed for a J-S-P mission.
The fact that an orbiter will spend a longer time in the vicinity of the planet

coupled with different modes of entry into the planetary atmosphere from a
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fly-by requires a separate analysis for such a mission. Even if an entry probe
would be sterilized, an analysis would still be in order to minimize the sterili-
zation cycle. Furthermore, an analysis must be performed for the bus carry-

ing the probe.

7.5 PUBLICATIONS

Stavro, W, and Gonzalez, C., ''Planetary Quarantine Considerations
for Outer Planet Mission', Preprint No, AAS-71-122, paper pre-
sented at the AAS 17th Annual Meeting, Seattle, Washington, June
28-30, 1971,

Stavro, W. and Gonzalez, C., "Flight Path and Mis sion Strategies
to Satisfy Outer Planet Quarantine Constraints'', Preprint No.
AAS-71-319, paper presented at the AAS/AIAA Astrodynamics
Specialists Conference, Ft. Lauderdale, Florida, August 17-19,
1971.
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SECTION VIII
| POST LAUNCH RECONTAMINATION STUDIES
NASA No. 191-58-63-11-00-55
Cognizance: R. Kazares

Associate Personnel: C. Haudenschild (AVCO)

8.1 INTRODUCTION

A great deal of effort is devoted to the maintenance of spacecraft (S/C)
cleanliness and the monitoring/control of the associated microbial burden
throughout the S/C fabrication and assembly activities. In the case of a lander
probe, sterilization requirements may be imposed on the lander assemblies,
which in addition may have to be encapsulated in a sterile condition prior to

launch.

The primary purpose of these activities is to minimize the probability
of biologically contaminating the various planets via Earth probes in order to
investigate the existence of authentic native life or life precursors on such

planets.

During the launch and the spaceflight portions of a given mission,
however, the spacecraft is exposed to a variety of environments. Such environ-
ments may cause the redistribution of viable particulate burden on the space-

craft by affecting the dislodgement/transport of such a burden.

The fundamental interests relative to the problem of environmentally

induced recontamination in the case of a lander/orbiter mission are:

1) Owverall S/C recontamination from viable burden on the payload
and shroud cavity internal surfaces as well as particulate redistri-

bution on the orbiter/lander externai surfaces.

2) Recontamination of an initially sterile lander assembly due to
migration of viable burden from a nonsterile orbiter after the

lander is decapsulated in readiness for entry to a planet surface.

This study represents an effort to assess the effect of typical mission

environments on possible viable particulate migration. Assessing the various
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migration mechanisms and quantifying such effects represent the core of this
effort. The goal is to develop a methodology and a quantitative analytical tool
for the evaluation of the recontamination problem for various planetary missions

and mission strategies.
8.2 SIGNIFICANT ACCOMPLISHMENTS

8.2.1 Launch Phase Recontamination

A probabilistic model was constructed for the launch phase recontami-
nation.l The model relates to the deposition on a spacecraft of microorganisms
released from the shroud during the launch phase due to the launch dynamic
environments. According to this model, the shroud is divided into NZ zones.
The expected number of particles of diameter D. from zone 1 that will migrate
to the spacecraft as a result of dynamic event k is

E(i,j,k) = N (1,5, k) Py(i,j,k) P () (1)

a

where

Nr(i,j,k) is the number of particles of diameter Dj released from

region i during the kth event

Pt(i’ j, k) is the probability that a released particle will traverse the

space between the shroud and spacecraft and strike the spacecraft

Pa(j) is the probability that a particle of diameter Dj will adhere to

the spacecraft

The total expected number of particles adhering to the spacecraft is

N N N .
Z r
E = S E®,j, k) (2)
- | Y - |
i=1 j=1 k=1
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If the average number of microorganisms per particle of diameter

Dj is Np(j) the expected spacecraft microorganism burden is

N
T

N
B = Z Z D N6 B0 - (3)

N
i=1 j=1 k=1

8.2.1.1 Release Probability. The particle force model (Ref. 1) provides the

probability of release of a particle as a function of the particle diameter. The
number of particles of diameter d released from the shroud by the first dynamic

event is
n(d) = n (@) [1-exp(-8/g,)"] (4)

where g is the maximum acceleration of the surface and no(d) is the number

of particles of diameter d. The term t is given by

t=0.731 - 0.00454d -~ (5)
where d is the particle diameter in microns. The term g, is given by

g - 6S(C1 + CZRH)

(6)
° 1rd2 g

where

S =0.0331
C1 =0.4
C2 = 0.006

RH = % relative humidity

Particle density - gpm—3

hel
1

Acceleration of gravity at sea level - 980 cm sec

aQ
I
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For subsequent events, no particles are released if the acceleration
is less than that experienced during any of the previous events. If the accelera-
tion level is higher than all previous events, the number released is the
difference between the number given by Eq. (4) and the number released in

all previous events.

8.2.1.2 Transfér Probability., No satisfactory model that would yield a

closed forrn solution was obtainable; however, order of magnitude analysis has

shown that the probability of transfer is very low.

Particles released by the shroud with a finite velocity will be acted
upon by drag forces given by

D = -(I/Z)pa CpA v -6mmav (7)

where

o
f

Drag force

Py = Air density within the shroud

CD = Pressure drag coefficient
A = Cross-sectional area of the particle
v = Particle velocity
n = Viscosity coefficient of air
a = Particle radius

For particles in the diameter range 10 - 100um, it can be shown that,
for reasonable ejection velocities (below 106 cm sec-l), the first term in

Eq. (7) is negligible. Solving the differential equation

m'g—;"=-61rnav (8)
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one obtains

where

mv
(o)

XQ = 6Trna

Note that in Eq. (9) the particle comes to rest in a distance X .

m=(1/6) mpd

a=(1/2)d

where

p = Particle density

d = Particle diameter
Using

-3 .
p=1gcm ~ (for the particle)
n=1786 x 10_7 g cm_1 sec—1 (for air)

Eq. (10) becomes

X =3.1x102v d2
fo} o

(10)

(11)

(12)

(13)

This distance is plotted in Fig. 8-1 as a function of release velocity for diam-

eters of 10 pm and 100 um, respectively. For intermediate diameters, the

curve would fall between these two.
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1 10 100 1000

Vo cm/sec

Fig. 8-1. Decay distance vs initial velocity of particles ejected
within the shroud in stagnant air
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Thus, it is apparent that few or no particles will go directly from the
shroud to the spacecraft in a stagnant atmosphere. They will be trapped in the
shroud cavity. Air currents within the cavity will predominantly sweep these
particles out the exhaust porfs, deposit them on the spacecraft or shroud sur-
face, or circulate them until the time of shroud release, depending substantially
on the method of venting the shroud and the flow pattern that materializes due

to the location of. the vent holes.

8.2.1.3 The Program. A computer program was written to compute the

recontamination probability based on the initial microbial/particulate burden

on the shroud following the proposed models. This program is written in
FORTRAN IV language and, though checked out on the UNIVAC 1108 computer,
it should work with little or no modification on any machine with a FORTRAN IV
compiler. A description and listing of the subject program is given in

Appendix A.

8.2.2 Spaceflight Phase Particulate Redistribution Mechanisms

Dynamic events of relevance were identified as those due to meteoroid
impact, pyro-firings, and the various deployment maneuvers. Mid-course
engine burns, however, do not seem to create sufficient acceleration levels to
release a significant number of ejecta. Typical acceleration levels due to
engine burn on the previously flown spacecraft, namely the Mariner Mars '69

and the Mariner Mars '71, are below . 05 g's RMS.

8.2.2.1 Micrometeoroid Impact. In conjunction with Dr. Charles Babcock

of Caltech, a summary of hypervelocity impact models was prepared and
evaluated with an assessment made regarding the applicability of various
models to analytical solution. The models representative of spacecraft

structures selected for analytical treatment are:

1) Infinite plate with pressure/surface loading
2) Infinite plate with perforation/shear loading
3) Semi-infinite solid with pressure/surface loading

4) 2-layer laminated plates in items 1) and 2) above.
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A reference list has been prepared containing analytical techniques to be used

as the basis for the solution of these models. The reference list is presented

as References 3 thru 13,

In addition to the analytical approach defined above, initial hyper-
velocity test plans and concepts were formulated in conjunction with Langley

Research Center (LRC) personnel.

This test series is designed to provide the necessary data for the
verification of the hypervelocity impact analytical models, and additional data
for the particle ejecta force model. The overall test data will also enable
particle release estimates to be made directly from meteoroid physical param-
eters for particular materials, boundary conditions, and projectile properties

(mass, diameter, and velocity).

8.2.2.2 Velocity of Ejection Due to a Micrometeoroid Impact and Pyro Shock

Environments. A knowledge of the velocity of ejected particles from spacecraft

surfaces during space flight is essential for describing particle trajectories
around the spacecraft for recontamination analysis. That is, if the velocity
of the ejecta is high enough, particles will follow straight line paths and may
escape from the vicinity of the spacecraft. On the other hand, if the velocity .
of the ejecta is small enough, the spacecraft electrostatic force, gravitational
force, and other forces, may be great enough to retain the ejecta in a cloud

around the spacecraft that may eventually redeposit on the various surfaces.

As indicated earlier, dynamic events in space of large enough
araplitude to dislodge a significant number of particles include pyro events and
meteoroid impact. In the case of meteoroid impact, a qualitative representa-
tion of the acceleration/velocity time history of a point on the surface in the

vicinity of impact is shown in Fig. 8-2.

The acceleration shown is a damped wave with decreasing frequency.
The initial acceleration is positive; that is, the surface accelerates toward the
particle. Not until the acceleration assumes a negative value (point a) can a
particle be released. Furthermore, the adhesion force model (Ref. 1) predicts
all particle removal will occur between point a and the maximum negative
acceleration at point b. At point a the velocity is a maximum. Somewhere

between points b and d, say at point c, the velocity reaches zero.

8-8



VELOCITY/ACCELERATION

900-556

ACCELERATION

VELOCITY

N

I

+ ~N
: \ STEADY STATE VELOCITY APPROXIMATION
I
|
|
|

a b c d

Fig. 8-2,
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It is assumed that between points a and b the motion can be
approximated by a steady state excursion with acceleration amplitude equal to
that at time b. This assumption is conservative in that the velocity will reach
zero at point b. This implies that, for a particle released at any given accelera-
tion level, the velocity of ejection (Vejc) will be somewhat lower than in the
actual case.* The equations relating displacement, velocity, and acceleration

for simple harmonic motion are given in Eqs. (14), (15), and (16).

x = A sin wt = x sin wt (14)
max
v=Awcos wt=v cos wt (15)
max
2 . .
a=-w A sin wt = -a sin t (16)
max

Pyro events lend themselves to an equivalent analysis. However,
the initial acceleration may be negative. If it is, particles cannot be released
with a velocity away from the surface until point d. Point d is equivalent to
point a in the case of positive initial acceleration and particles are released

within the period from point d to e.

8.2.2.3 Computations. Typical spacecraft dynamic environment estimates

are given for various types of events in Table 8-1. In each case, peak
accelerations (gpeak) corresponding to the first maximum of Fig, 8-2 are
given. For the first three entries, typical frequencies are given enabling one
using Eqgs. (14), (15), and (16) to solve for peak displacement and velocities.

The final entry concerning meteoroid impact is an order of magnitude estimate.

The damping factor from cycle to cycle for pyro events is about 0.5
to 0.9. At this point, the gmaxls obtained enabled one to calculate the maximum

percentage of the total initial particle burden removed from a surface (Prnax)' ok

*The smaller vejc is, the greater chance the small forces associated with the
spacecraft have of recapturing the particles and recontaminating the spacecraft.
**For a given particle diameter.
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Table 8-1. Estimated peak acceleration, displacement,
and nominal frequencies '

-1
1 ¥
Dynamic f(Hz) gpeak(g s) A(cm) Vma.x(crn sec
Environment | Frequency | Acceleration Displacement Velocity
Pyro events | 2000-5000 2000 0.0124-0.00199 156. 0
at Joint 62.5
Pyro events | 2000 500 3,10 x 1073 39.0
Separation 5000 3000 0.00298 93.6
Launch
Vehicle bio
canister
a
Meteoroid® | 60000 10° 0. 00069 260
®Order of magnitude estimates
t
€max
P = 10031 - exp|- (17)
max g,

For meteoroid impact the damping factor is not yet known. Since the
time relationship between the acceleration and velocity is assumed to be that of

the sin wt and cos wt, one may write acceleration as a function of velocity

and 8rax

V/Vmax = cos wt ‘ (18)
5 1/2

sin wt = 1 - (V/Vmax) (19)
2' 1/2

g = 8ax {1 - (v/V 0y } (20)
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Therefore, the percentage of the total number of particles removed on the

surface can be written as in Eq. (21)*

gmax )2

1721t
(21)

which indicates that given a velocity v the percentage P of the total original

P =100}1 - exp -[ %1 - (v/vrnaLX

(o]

number of particles on the surface will be ejected with a velocity vejc satisfying

inequality Eq. (22).

vsv . =V (22)

Of more interest, however, is the percentage of the total number of particles

that will be ejected at g . that have velocities satisfying inequality Eq. (23).

O<v . =v (23)
ejc

These values are tabulated in Table 8-2.

8.3 PROBLEM AREAS

8.3.1 Surface Response to Micrometeoroid Impact

The problem of quantitatively defining the surface response surrounding
a meteoroid impact has not been completed. The unforeseen lack of directly
applicable reference material and the complexity of the subject have delayed

the solution of this problem.

The modifications necessary to existing analytical treatment of this
subject and hypervelocity impact tests to be conducted for analytical verifica-

tion are described in para. 8.4,

*For a given particle diameter.
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. Table 8-2. PL or percentage of particles released satisfying 0 = Vejc <
D = 100pm
D P
g 10 100 1000 104 105 106
max
viv P 3 23% 40% 62% 84% 97% 100%
max max :
0.9 18% 16% 13.5% 8. 8% 3.4% 0. 4%
0.5 3.4% 3.0% 2.4% 1.4% 0.5% 0.04%
0.3 1. 1% 1.0% 0.78%
0.1 0.12% 0.11%| 0.083% 0.05% ]| 0.016% 0.001%
0. 01 0.0012% | 0.0011% | 0,0008%]| 0. 0005% |0. 0002%| 1.4 x 10-5%
D = 10um
P [
g 10 100 1000 104 105 106
max
A Pmaxa 0.16% | 0.79% | 3.7% 17% 59% 99%
0.9 43% 43% 42% 41% 33% 7.3%
0.5 9.4% 9.4% 9,2% 8. 6% 6% 0. 66%
0.3 3. 2% 3.2% 3.1% 2.9% 2. 0% 0.19%
0.1 0.34% 0. 34% 0.31%| 0.31% 0.21% 0.02%
0. 01 0.0034%]0.0034% | 0.0034%| 0.0031% | .0.002% | 1.94 x 10-4%
apmax is the maximum percentage released of the total initial number of

particles on the surface for the given g .
max
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8.3.2 Particle Forces in Space

To determine the trajectories of ejected particles in space, one needs
detailed information of the forces acting on the free particles. An order of
magnitude analysis indicated that the electrostatic force may be the most

significant force in space.

The first step in analyzing this force was to detei‘mine the surface
potentials on the spacecraft, The approach to this problem assumed the
spacecraft to be a spherical conductor. The solar wind plasma was modeled as
a stream of electrons and ions traveling radially outward from the Sun. Equa-
tions were derived for the electron and ion current to the spacecraft by finding
the capture radius of the particles in the electric field of the spherical space-
craft model. An attempt was made to calculate photoelectron current based on
the photon flux as a function of the photon energy, the quantum efficiency of the
photons, and the potential of the sphere. This approach has 3 primary weak-
nesses: 1) there is in'adequate information concerning quantum efficiencies of
spacecraft surfaces; 2) the spacecraft is not a conducting sphere; and 3) plasma

currents are more complicated than those used.

8.4 FUTURE ACTIVITIES

8.4.1 Micrometeoroid Impact

8.4.1.1 Analysis. The analytical solution of four basic hypervelocity impact
problems (as described in para. 8.2.2.1) is being pursued by JPL Division 35
under the cognizance of Mr. Al Knoell. The result of this study will be the

definition of surface response utilizing a computer model of meteoroid impact.

8.4.1.2 Testing for Verification. The analytical solution to the surface

response to meteoroid impact will be verified utilizing data obtained from the

test series of hypervelocity impacts at LRC.

The force model of particulate release will be verified, or modified
if necessary, utilizing a series of vacuum chamber shock tests at JPL. This

test series will be conducted to determine the effect of shock (surface
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1

acceleration) intensity, relative humidity, and other pertinent environments on

particle release parameters (the force model described in Ref. 1).

8.4.1.3 Particle Forces in Space. From a review of the literature, it became

apparent that there is not enough data to solve the photoelectron current problem
theoretically and that existing experimental values will have to be used. Forms
of equations have been chosen for the plasma electron and ion currents. The
three currents - photoelectron, plasma ion, and electron - combine to form an
equilibrium problem which may be solved for a surface potential at which the

sum of the currents to the surface point is zero.

It will also be necessary to formulate the boundary value electrostatic
Dirichlet problem. That is, the potentials at each point on the surface of the
spacecraft are specified, and we determine the potential everywherein the
vicinity of the spacecraft. Because of the complex geometry of an actual
spacecraft, the problem cannot be solved in closed form and must be approached
numerically. It has been decided that the appropriate approach will be to

divide the spacecraft into regions of different surface change density.

In each of these regions, a point is given at which the potential is
specified on the surface. The number of points and regions determines the
accuracy obtained. Coulomb's law and the given potentials form a set of
equations through which one may determine the surface charge densities that
satisfy the given boundary conditions. Once the surface charge densities have
been determined, one may calculate the electrostatic potential anywhere in

the vicinity of the spacecraft.

The potential of the particles in space is very important because this
determines the magnitude and direction of a force on the particles. There are
two regions of interest in which the particle will experience different environ-
mental conditions: 1) the sunlit region where ail three currents, photoelectron,
ion plasma, and electron, will be collected by the particle; and 2) the dark
region. Preliminary analysis would indicate that the particle will attain a
positive potential in the sunlit region. In the dark region, the only current
incident on the particles is the plasma photoelectron, and one would expect the

particles to become negative.
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A major question of interest is the charging rates of these particles.
That is, if the particle travels from a sunlit region to a dark region, how long
will it take the particle to become negative? Or vice versa; how long would it
take a particle in the dark region entering a sunlit region to become positive?

This question is of importance for the following case in point.

Assume the lander portion of a spacecraft is negative because it is
shaded. An ejected particle in the Sun is positive. If it travels to the vicinity
of the dark region, it will be attracted. If, however, it enters the shade and
becomes negative, it will experience a repulsive force and may not be a
recontamination problem. Therefore, the charging rates of the particles in
space in the dark and sunlit regions are important when compared to the transit
times of these particles. These topics will be pursued in the next 6 months'
effort.
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APPENDIX A

LAUNCH PHASE RECONTAMINATION MODEL COMPUTER
PROGRAM DESCRIPTION AND LISTING

Al INPUT.

The number of events and number of zones in the model, up to a

maximum of ten each, are read from a punched card (Format 2110).

The average number of microbes per particle as a function of particle
diameter are read next. The first data point is for particles in the range

10-11 micrometers, etc., for a total of 90 data points (Format 10E8.2).

The initial particle burden as a function of particle size for each zone

to read next (Format 10E8.2). There are 90 data points for each zone.

The maximﬁm acceleration level in each zone for the first event is
read (Format 10E8.2). The next card is the acceleration in each zone for the

second event, etc.

Finally, the probabilities of transfer for each event and zone (For-
mat E8.2). The first card reads that of the first zone, first event. The second

card reads first zone, second event, etc.

A 2 COMPUTATIONS
For each event and zone the program computes:

1) The transfer probability Pt' This is done in a separate subroutine.
At present, this is a dummy routine which simply reads the value

from cards.

2) The adherence probability Pa' This is also done in a dummy
subroutine which sets the probability equal to unity. " The
purpose of these routines is to provide ease of update as the

model becomes more sophisticated.

3) The fraction of particles released by the last previous event.

*A conservative number from a PQ standpoint.

A-1
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4) The fractions of particles released by the present event if the

present acceleration value exceeds all previous values in the zone.

5) The expected number of particles in each diameter range (Eq. (1),

para. 8.2.1) contaminating the spacecraft.
6) The total number of microbes reaching the spacecraft.

The program then calculates the sum over zones of microbial burden

for each event and the sum over events for each zone and the total burden.

Finally, the total number of particles of each size transferred to the

spacecraft is computed.

A.3 OUTPUT
The output from this program is two tables.

Table A-1 gives the number of organisms reaching the spacecraft as
a result of each event in each zone. It also gives the expected total number of

transferred organisms.

Table A-2 gives the expected total number of particles in each
diameter range migrating to the spacecraft. The purpose of including
Tables A-1 and A-2 is to delineate the format and not to convey any quan-

titative conclusions on any mission.
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Table A-1. Expected number of organisms released from each zone and
contaminating the spacecraft for all dynamic events

Event Zone Total
1 2
1 1.52-06 1.76-05 1.91-05
2 1.61-05 0.00 1.61-05
3 0.00 2.01-05 2.01-05
Total 1.76-05 3,77-05

The expected overall transfer of burden is 5. 53-05 microorganisms.
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